Best Practices for Achieving Success with Custom Modeling and Machine Learning

One of the most common reasons organizations fail to realize significant improvements in risk management after implementing custom modeling solutions can be described with one phrase: Junk in. Junk out. This article discusses best practices as it relates to data management and other factors that are shown to improve performance when it comes to custom modeling and machine learning or artificial intelligence.

It’s not just breadth of data, but also quality of data, that is important. One of the biggest misconceptions about machine learning (ML) and artificial intelligence (AI) is that you can just flip a switch and let the technology work its magic.

Read More